3 research outputs found

    SHERLOCK: Experimental evaluation of a conversational agent for mobile information tasks

    Get PDF
    Abstract—Controlled Natural Language (CNL) has great potential to support human-machine interaction (HMI) because it provides an information representation that is both human readable and machine processable.We investigated the effectiveness of a CNL-based conversational interface for HMI in a behavioural experiment called Simple Human Experiment Regarding Locally Observed Collective Knowledge (SHERLOCK). In SHERLOCK, individuals acted in groups to discover and report information to the machine using natural language (NL), which the machine then processed into CNL. The machine fused responses from different users to form a common operating picture, a dashboard showing the level of agreement for distinct information. To obtain information to add to this dashboard, users explored the real world in a simulated crowd-sourced sensing scenario. This scenario represented a simplified, controlled analogue for tactical intelligence (i.e., direct intelligence of the environment), which is key for rapidly planning military, law enforcement, and emergency operations. Overall, despite close to zero training, 74% of the users inputted NL that was machine interpretable and addressed the assigned tasks. An experimental manipulation aimed to increase user-machine interaction, however, did not improve performance as hypothesised. Nevertheless, results indicate the conversational interface may be effective in assisting humans with collection and fusion of information in a crowd-sourcing context

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Strategic Maneuver and Disruption with Reinforcement Learning Approaches for Multi-Agent Coordination

    Full text link
    Reinforcement learning (RL) approaches can illuminate emergent behaviors that facilitate coordination across teams of agents as part of a multi-agent system (MAS), which can provide windows of opportunity in various military tasks. Technologically advancing adversaries pose substantial risks to a friendly nation's interests and resources. Superior resources alone are not enough to defeat adversaries in modern complex environments because adversaries create standoff in multiple domains against predictable military doctrine-based maneuvers. Therefore, as part of a defense strategy, friendly forces must use strategic maneuvers and disruption to gain superiority in complex multi-faceted domains such as multi-domain operations (MDO). One promising avenue for implementing strategic maneuver and disruption to gain superiority over adversaries is through coordination of MAS in future military operations. In this paper, we present overviews of prominent works in the RL domain with their strengths and weaknesses for overcoming the challenges associated with performing autonomous strategic maneuver and disruption in military contexts.Comment: 23 pages, 3 figures, 60 references, Review Pape
    corecore